您当前的位置 :主页 > 历史 > 正文
Moser theory
时间:2019-08-01 09:12 来源:网络整理

Post-publication activity

Curator: Luigi Chierchia

Contributors:

0.20 -

Benjamin Bronner

0.20 -

John N. Mather

0.20 -

James Meiss

0.20 -

Eugene M. Izhikevich

Alessandra Celletti

Kolmogorov-Arnold-Moser (KAM) theory deals with persistence, under perturbation, of quasi-periodic motions in Hamiltonian dynamical systems.

An important example is given by the dynamics of nearly-integrable Hamiltonian systems. In general, the phase space of a completely integrable Hamiltonian system of \(n\) degrees of freedom is foliated by invariant \(n\)-dimensional tori (possibly of different topology). KAM theory shows that, under suitable regularity and non-degeneracy assumptions, most (in measure theoretic sense) of such tori persist (slightly deformed) under small Hamiltonian perturbations. The union of persistent \(n\)-dimensional tori (Kolmogorov set) tend to fill the whole phase space as the strength of the perturbation is decreased.

The major technical problem arising in this context is due to the appearance of resonances and of small divisors in the associated formal perturbation series.

Contents

 
Classical KAM theory

The main objects studied in KAM theory are \(d\)-dimensional embedded tori \(\mathcal{T}^d\) invariant for a Hamiltonian flow \(\phi^t_H: \mathcal{M}^{2n}\to\mathcal{M}^{2n}\ ,\) where \(t\in\mathbb{R}\) denotes the time variable and \(H=H(p,q)\) is a (smooth enough or analytic) Hamiltonian function depending on \(2n\) symplectic (or canonical) variables \(p=(p_1,...,p_n)\) and \(q=(q_1,...,q_n)\) defined on the phase space \(\mathcal{M}^{2n}\ .\) This means that if \((p_0,q_0)\in\mathcal{T}^d\ ,\) then \(\phi^t_H(p_0,q_0)\in\mathcal{T}^d\) for any \(t\in\mathbb{R}\ ,\) \(\phi^t_H(p_0,q_0)=(p(t),q(t))\) denoting the solution of the (standard) Hamilton equations \[\tag{1} \left\{\begin{array}{l}\dot p = - \partial_q H(p,q)\\ \dot q = \partial_p H(p,q)\end{array}\right.\quad{\rm with\ initial\ data }\quad \left\{\begin{array}{l} p(0)=p_0\\ q(0)=q_0\end{array}\right. . \]

Here, the dot represents time derivative, while \(\partial_z\) denotes the gradient with respect to the \(z\) variables.

A \(d\)-dimensional (embedded and smooth or analytic) invariant torus for \(\phi_H^t\ ,\) with \(2\le d\le n\ ,\) is called a KAM torus if:

the flow \(\phi^t_H\) on \(\mathcal{T}^d\) is conjugated to a linear translation \(\theta \to \theta + \omega t\ ,\) where \(\theta=(\theta_1,...,\theta_d)\) belongs to the standard \(d\)-dimensional torus \(\mathbb{T}^d=http://www.scholarpedia.org/article/Kolmogorov-Arnold-Moser_theory/\mathbb{R}^d/(2\pi \mathbb{Z})^d\ ;\) the vector \(\omega=(\omega_1,...,\omega_d)\in\mathbb{R}^d\) is called the frequency vector;

the frequency vector \(\omega\) is rationally independent and "badly" approximated by rationals, typically in a Diophantine sense:

\[\tag{2} \exists\ \gamma, \tau>0\ {\rm such\ that} \quad |\omega\cdot k|:= |\sum_{j=1}^d \omega_j k_j|\ge \frac{\gamma}{\|k\|^\tau}\ ,\ \forall\ k\in\mathbb{Z}^d\backslash\{0\}\ . \]

From measure theory, it follows that the set of Diophantine vectors in \(\mathbb{R}^d\) is of full Lebesgue measure.

Note that the case \(d=1\) corresponds to periodic trajectories of period \(2\pi/\omega\) (this case is normally excluded in classical KAM theory since does not involve small divisors). On the other hand, the case \(d=n\) corresponding to maximal KAM tori is particularly relevant.

Moser theory

Figure 1: Linear translation on a 2-torus (animation by Corrado Falcolini)

Moser theory

Figure 2: A periodic case (animation by Corrado Falcolini)

Moser theory

Figure 3: An orbit on a 2-dimensional KAM torus in a 3-dimensional energy level (animation by Corrado Falcolini)

Kolmogorov normal forms and Kolmogorov's Theorem

Let \(H\) be a real-analytic Hamiltonian on \(\mathcal{M}^{2n}=U\times \mathbb{T}^n\) (with \(U\) an open region in \(\mathbb{R}^n\)) and assume that \(\mathcal{T}^n\) is a maximal KAM torus for \(H\) and that it is a (Lagrangian) graph over the angle variables. Then there exists a symplectic transformation \(\phi: (y,x)\to(p,q)\) (i.e., a diffeomorphism preserving the canonical 2-form \(\displaystyle \sum_{i=1}^n dp_i\wedge dq_i\)) transforming \(H\) in Kolmogorov normal form: \[\tag{3} H\circ\phi(y,x)=K(y,x):=E+\omega\cdot y + Q(y,x) \]

关键词阅读: Moser theory

猜你喜欢

分享到:

奇闻趣事

版权和免责申明

凡注有"西双版纳"或电头为"西双版纳生活网"的稿件,均为西双版纳生活网独家版权所有,未经许可不得转载或镜像;授权转载必须注明来源为"西双版纳生活网",并保留"西双版纳生活网"的电头。如有侵权行为第一时间通知删除 删稿联系邮箱:sheng6665588@gmail.com

©2017   西双版纳生活网  版权所有